Your cart

Your cart is empty


Explore our range of products

Cambridge University Press Hardback English

Tensor Decompositions for Data Science

By Grey Ballard

Regular price £54.99
Unit price
per

Cambridge University Press Hardback English

Tensor Decompositions for Data Science

By Grey Ballard

Regular price £54.99
Unit price
per
 
(0 in cart)
Apple Pay
Google Pay
Maestro
Mastercard
PayPal
Shop Pay
Visa

You may also like

  • Tensors are essential in modern day computational and data sciences. This book explores the foundations of tensor decompositions, a data analysis methodology that is ubiquitous in machine learning, signal processing, chemometrics, neuroscience, quantum computing, financial analysis, social science, business market analysis, image processing, and much more. In this self-contained mathematical, algorithmic, and computational treatment of tensor decomposition, the book emphasizes examples using real-world downloadable open-source datasets to ground the abstract concepts. Methodologies for 3-way tensors (the simplest notation) are presented before generalizing to d-way tensors (the most general but complex notation), making the book accessible to advanced undergraduate and graduate students in mathematics, computer science, statistics, engineering, and physical and life sciences. Additionally, extensive background materials in linear algebra, optimization, probability, and statistics are included as appendices.
Tensors are essential in modern day computational and data sciences. This book explores the foundations of tensor decompositions, a data analysis methodology that is ubiquitous in machine learning, signal processing, chemometrics, neuroscience, quantum computing, financial analysis, social science, business market analysis, image processing, and much more. In this self-contained mathematical, algorithmic, and computational treatment of tensor decomposition, the book emphasizes examples using real-world downloadable open-source datasets to ground the abstract concepts. Methodologies for 3-way tensors (the simplest notation) are presented before generalizing to d-way tensors (the most general but complex notation), making the book accessible to advanced undergraduate and graduate students in mathematics, computer science, statistics, engineering, and physical and life sciences. Additionally, extensive background materials in linear algebra, optimization, probability, and statistics are included as appendices.